## A Simple Investigation into the Limiting Space of an Edge Replacement System

Ifan Howells-Baines

December 2024

## Introduction

This is a small project on determining the limiting space of an edge replacement system. Information on edge replacement systems can be found in the paper "*Rearrangement Groups of Fractals*" by James Belk and Bradley Forrest. Alternatively, there will be a project on edge replacement systems posted on my website in the near future.

## The Edge Replacement System

The edge replacement of focus is  $\mathcal{R} = (G_0, e \to R)$ , where  $G_0$  and R are given by



The red and green vertices are the initial and terminating vertices respectively. We will get the limiting space of  $\mathcal{R}$ .

First, we will show that  $\mathcal{R}$  is expanding, which implies that the gluing relation on the symbol space  $\Omega$  of  $\mathcal{R}$  is an equivalence relation. There are three conditions that need to be met, and it is clear that  $\mathcal{R}$  satisfies them:

- 1.  $G_0$  and R do not have isolated vertices.
- 2. The initial and terminating vertex of R are not adjacent.
- 3. R has at least three vertices and two edges.

To obtain the limiting space of  $\mathcal{R}$ , we need to know which sequences in  $\Omega$  are equivalent. We will do this by looking at the first few elements of the full expansion graph, which has been drawn in Figure 2. Two elements  $\epsilon_0 \epsilon_1 \epsilon_2 \ldots$ ,  $\epsilon'_0 \epsilon'_1 \epsilon'_2 \ldots \in \Omega$  are equivalent if all  $n \ge 0$ , the edges  $\epsilon_0 \epsilon_1 \epsilon_2 \ldots \epsilon_n$  and  $\epsilon'_0 \epsilon'_1 \epsilon'_2 \ldots \epsilon'_n$  share a vertex in  $G_n$ . If we look at the centre of each graph in the full expansion sequence, then we see that  $T\bar{0} \sim L\bar{0} \sim R\bar{0} \sim B\bar{0}$ . We create new 'centres' in each successive graph of the full expansion sequence, hence we can see that

$$\epsilon_0 \dots \epsilon_n 1 \overline{0} \sim \epsilon_0 \dots \epsilon_n 2 \overline{0} \sim \epsilon_0 \dots \epsilon_n 3 \overline{0} \sim \epsilon_0 \dots \epsilon_n 4 \overline{0}.^*$$

Finally, if we look at the regions of  $G_n$  where two edges point to each other, then we see that

$$\epsilon_0 \dots \epsilon_n 0 \overline{3} \sim \epsilon_0 \dots \epsilon_n 1 \overline{3}.$$

The limiting space of  $\mathcal{R}$  is  $\Omega/\sim$ . This space is homeomorphic to the Vicsek fractal.

<sup>\*</sup>Where  $\epsilon_0 \in E(G_0)$  and  $\epsilon_i \in E(R)$  for i > 0.



Figure 2: First three elements of the full expansion graph.





